Assessment Rubrics # Assessment Rubric for ME312 - Thermodynamics II **Method:** One project and the final exam. - a. an ability to apply knowledge of math, science, and engineering - e. an ability to identify, formulate, and solve engineering problems - **g.** an ability to communicate effectively (g1: written; g2: oral) - **h.** the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context - **j.** a knowledge of contemporary issues - **k**. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | Performance | Exceeds expectation (5) | Meets expectation (3) | Does not meet expectations (1) | |--|---|---|---| | 1. Problem setup [a, e] | Problems are translated into proper mathematical forms which are ready to be solved. | Problems are translated into mathematical forms which are ready to be solved with minor errors | Unable to translate problem into proper mathematical forms | | 2. Mathematical modeling [a] | Combines mathematics and/or scientific principles to <i>formulate models</i> of thermodynamics; | Chooses, rather than develops, a mathematical model and/or scientific principle that applies to thermodynamics | Does not understand the connection between a mathematical model and/or scientific principles applied to thermodynamics | | 3. Engineering problem-
solving [e] | Executes calculation
correctly by hand and/or
using math/engineering
software | Minor errors in calculations by hand or using math/engineering software | Calculations not performed or performed totally incorrectly by hand or does not know how to use math/engineering software | | 4. Global, economic, environmental, and societal impacts [h] | Design project includes content/information that shows good understanding of impact in a global, economic, environmental, and social context. | Design project includes content/information that shows adequate understanding of impact in a global, economic, environmental, and social context. | Design project does not include or <i>includes</i> content/information that shows <i>little or no understanding</i> of the impact in a global, economic, environmental, and social context. | | 5. Project report and organization [g1] | Materials are well
organized and easy to
follow, correct grammar
and spelling | Materials are generally organized but some paragraphs are not well developed and thought out, some minor typos and incorrect grammar | Poor organization, material
is poorly written with no
sub-headings, numerous
typos and incorrect
grammar | |---|--|--|--| | 6. Project presentation [g2] | Clear, effective, and well organized presentation | generally effective
presentation with some
difficulty explaining key
points | Poor presentation, difficult to follow and understand | | 7. Contemporary issues | Design project includes
content/information that
shows a good
understanding of
contemporary issues | Design project includes
content/information that
shows an understanding
of contemporary issues | Design project does not include or includes content/information that shows little or no understanding of contemporary issues | | 8. Use of modern engineering tools [k] | Computer and software are extensively used in the course | Computer and software are somewhat utilized, effort was put into learning new software | Computer and software are not utilized, no attempt was made at learning new software | ### Assessment Rubrics for ME 356 - Dynamical Systems **Method**: One project and the final exam. - **a**. an ability to apply knowledge of mathematics (through multivariate calculus and differential equations), science, and engineering, familiar with statistics and linear algebra. - e. an ability to identify, formulate, and solve engineering problems - **k**. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | Performance | Exceeds expectation (5) | Meets expectation (3) | Does not meet expectation (1) | |---|---|---|---| | 1. Knowledge and application [a] | Applies the appropriate knowledge and concepts to the problem with accuracy and proficiency; shows precise understanding of these knowledge and concepts. | Applies the relevant knowledge and concept to the problem, possibly in a roundabout way; understands the major points of the knowledge, with possible misunderstanding or failure to recall minor points; | Fails to apply relevant
knowledge and concepts
to the problem;
misunderstands or fails to
recall critical points. | | 2. Problem identification [e] | The question to be solved is accurately identified. | The question to be solved is identified largely correctly with possible minor mistakes. | The question to be solved is identified substantially wrong. | | 3. Problem setup [e] | The problem is translated in a mathematical or other standard form readily amenable for solution. | The problem is
translated in a
mathematical or other
standard form that may
contain minor mistakes
or not easily solved. | Unable to translate to an appropriate mathematical or other standard form. | | 4. Solution [e] | The problem is solved accurately in terms of mathematical manipulation and numerical calculation. | The solution contains some minor math or numerical errors. | Major problem in solving the problem. | | 5. Use of modern
engineering software
[k] | Demonstrates knowledge and application of modern engineering software through accurate development and interpretation of computer programs to solve problems. | Demonstrates awareness of modern engineering software through mostly correct development and interpretation of computer programs to solve problems, but may contain minor mistakes or syntax errors. | Unable to use modern engineering software to develop or interpret computer programs to solve problems. | ## Assessment form for ME 380 - Design of machine elements Method: One project and the final exam - **a.** an ability to apply knowledge of mathematics, science, and engineering; familiarity with statistics and linear algebra. - **c.** an ability to design a system, component, or process (both thermal and mechanical) to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability - e. an ability to identify, formulate, and solve engineering problems - g. an ability to communicate effectively (g1: written) | Performance | Exceeds expectation (5) | Meets expectation (3) | Does not meet expectation (1) | |----------------------------------|---|---|---| | 1. Knowledge and application [a] | Applies the appropriate knowledge and concepts to the problem with accuracy and proficiency; shows precise understanding of these knowledge and concepts. | Applies the relevant knowledge and concept to the problem, possibly in a roundabout way; understands the major points of the knowledge, with possible misunderstanding or failure to recall minor points; | Fails to apply relevant knowledge and concepts to the problem; misunderstands or fails to recall critical points. | | 2. Problem identification [e] | Problem is accurately identified with physical and mechanical models. | Problem is interpreted largely correctly with possible minor mistakes. | The interpretation is substantially wrong. | | 3. Problem formulation [e] | The problem is translated in a mathematical or other standard form readily amenable for solution. | The problem is
translated in a
mathematical or other
standard form that may
contain minor mistakes
or not easily solved. | Unable to translate to an appropriate mathematical or other standard form. | | 4. Solution [e] | The problem is solved properly in terms of mathematical manipulation and numerical calculation. | The solution contains some minor math or numerical errors. | Major problem in solving the problem. | | Performance | Exceeds expectation (5) | Meets expectation (3) | Does not meet expectation (1) | |--|---|--|--| | 5. Design strategy [c] | Uses sound design
strategy, readily uses
alternative methods
when necessary | Uses valid design
strategy, albeit maybe
roundabout and lacks
alternatives | Fails to use a valid design
strategy, haphazard
approach | | 6. Optimization [c] | Suggests several potential structures or solutions, chooses better design or an appropriate discussion of pros and cons of the alternatives | Suggests several potential structures or solutions. However, fails to choose the optimal design or misses some important aspects in discussing the pros and cons of different alternatives | Fails to consider important alternatives or shows complete lack of understanding pros and cons of alternatives | | 7. Constraints [c] | Appropriately considers constraints such as manufacturability, economics, safety, and environment. | Considers some of the constraints, but fails to consider or misinterprets some important constraints. | Fails to consider or misinterprets key constraints. | | 8. Documentation:
contents and
organization [c,g1] | Report well organized,
appropriately sectioned,
uses diagram when
appropriate, important
issues clearly stated | Report reasonably well documented. May lack some minor aspects. | Report not well organized, lack key aspects. | | 9. Documentation:
language and format
[g1] | Almost no grammar or
spelling errors, uses
good professional style,
neat and visually
appealing | Possess many of the characteristics of desirable features, but lacks a few others | Fails to write in a professional style | ### Assessment Rubrics for ME 380L – Stress Laboratory **Method**: Lab reports and instructor observation during Lab sessions #### **Outcome Assessed:** **b.** an ability to design and conduct experiments, as well as to analyze and interpret data **d.** an ability to function on multi-disciplinary teams ${\bf k}$. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | Performance | Exceeds expectation (5) | Meets expectation (3) | Does not meet expectation (1) | |--|---|--|--| | 1. Design and
Realization of
Experiment [b, k] | Carefully plans and sets objectives as well as strategies, selects relevant equipment to the experiment, develops setup diagrams of equipment connections and wiring. | Plans and sets objectives,
but strategies are not
clearly stated, needs
guidance to select
relevant equipment to the
experiment and to
develop equipment
connection and wiring
diagrams. | Unable to plan and set objectives, incapable of selecting relevant equipment to conduct the experiment, equipment connection and wiring diagrams are unrecognizable. | | 2. Teamwork [d] | Actively engages and cooperates with other group members in an effective manner. | Cooperates with other group members in a reasonable manner. | Distracts or discourages other group members from conducting the experiment. | | 3. Conducting Experiment [b, k] | Does proper calibration of equipment, carefully examines equipment moving parts, and ensures smooth operation and process. | Calibrates equipment, examines equipment moving parts, and operates the equipment with minor error. | Unable to calibrate appropriate equipment, and equipment operation is substantially wrong. | | 4. Laboratory Safety
Rules [b] | Respectfully and carefully observes safety rules and procedures | Observes safety rules and procedures with minor deviation. | Disregards safety rules and procedures. | | 5. Data Collection [b] | Plans data collection to
achieve experimental
objectives, and conducts
an orderly and a complete
data collection. | Plans data collection to achieve experimental objectives, and collects complete data with minor error. | Does not know how to plan
data collection to achieve
experimental goals; data
collected is incomplete and
contain errors. | | 6. Data Analysis [b] | Accurately conducts simple computations and statistical analysis using collected data; correlates experimental results to known theoretical values; accounts for measurement errors and parameters that affect experimental results. | Conducts simple computations and statistical analysis using collected data with minor error; reasonably correlates experimental results to known theoretical values; attempts to account for measurement errors and parameters that affect experimental results. | Unable to conduct simple statistical analysis on collected data; no attempt to correlate experimental results with known theoretical values; incapable of explaining measurement errors or parameters that affect the experimental results. | |----------------------|--|--|---| | 7. Computer Use [b] | Uses computer to collect and analyze data effectively. | Uses computer to collect and analyze data with minor error. | Does not know how to use computer to collect and analyze data. | ## Assessment Rubrics for ME410 – Heat Transfer **Method**: One project and the final exam. #### **Curriculum Outcomes Assessed:** - a: an ability to apply knowledge of math, science and engineering - c: an ability to design a system, component, or process to meet desired needs - e: an ability to identify, formulate and solve engineering problems - **g.** an ability to communicate effectively (g1: written) - **k**. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice | Performance | Exceeds expectations (5) | Meets expectations (3) | Does not meet expectations (1) | |---|--|---|---| | 1. Heat and Fluid
System
[a, e] | Effectively models and applies heat/ fluid principles to thermal/ fluid problems | Being able to model
and apply heat/fluid
principles to
thermal/fluid problems
with minor errors | Does not know how to
apply heat/ fluid principles
to thermal/fluid problems | | 2. Application of
Mathematics
[a] | Effectively uses
differential equations
to solve heat/fluid
problems | Being able to use
differential equations
to solve heat/fluid
problems with minor
errors | Does not know how to use
differential equations to
solve heat/fluid problems | | 3. Calculation/ Solution [e] | Executes calculation
correctly by hand
and/or using
mathematical software | Minor errors in calculations by hand or using mathematical software | Calculations are not performed or are performed incorrectly by hand or does not know how to use mathematical software | | 4. Design of Heat
Transfer Process
[c] | Effectively uses and applies heat transfer principles to a design problem/project | Being able to use and
apply heat
transfer principles to a
design problem/project
with minor errors | Uses and applies heat
transfer principles to a
design problem/project
with substantial errors | |--|--|--|--| | 5. Project Report:
Content/Organization/
English
[g1] | Report well organized,
appropriately
sectioned, no grammar
or spelling errors, uses
professional style | Report reasonably well
documented. May be
lacking some minor
aspects | Report not well organized, lacks key aspects | | 6. Use of Computer [k] | Effectively uses
computer and software
for solving heat/fluid
problems | Is able to use computer
and software for
solving heat/fluid
problems, but has
minor errors | Does not use computer and
software for solving
heat/fluid problems or has
substantial errors | # Assessment Rubrics for ME410L – Thermal Science Laboratory Method: Lab reports and instructor observation ### **Outcomes Assessed:** **b.** an ability to design and conduct experiments, as well as to analyze and interpret data **d.** an ability to function on multi-disciplinary teams **g.** an ability to communicate effectively | | Exceeds expectation | Meets expectation | Does not meet | |---------------------------------------|--|---|---| | Performance | (5) | (3) | expectations (1) | | 1. Data Reduction and
Analysis [b] | Able to correctly analyze and interpret experimental data and compare results with theory or empirical correlations, accurately perform experimental uncertainty analysis, and | Able to analyze and interpret data, with minor errors, results are somewhat compared with theory or empirical correlations, aware of experimental | Makes numerous mistakes in data analysis and interpretation; Does not compare results with theory or empirical correlations, fails to perform uncertainty | | | draw conclusions | uncertainty analysis,
draws reasonable
conclusions | analysis,draws wrong conclusions | | 2. Experimental Safety [b] | Carefully observes lab
safety rules and
procedures | Observes lab safety rules and procedures with guidance. | Acts carelessly and fails to follow safety rules | | 3. Equipment
Selection | Logically and carefully selects equipment to be used for the experiment; | Able to select equipment to be used for the experiment with | Does not understand the connection between the equipment and the | | and Setup [b] | correctly setup the | guidance; correctly | measurement to be used; or | |---------------|--------------------------|----------------------|----------------------------| | | connection/wiring of the | setup the | did not know how to setup | | | equipment | connection/wiring of | the connection/wiring | | | | the equipment, with | | | | | minor error | | | | | | | | 4. Equipment Operation [b] 5. Data Collection | Operates equipment in correct & careful fashion, Selects optimum range/setting for operation Collects data in a neat, | Operates equipment in correct & careful fashion, with guidance, understand the optimum range/setting for operation Collects data in a | Does not know how to operate equipment; has no knowledge of measurement optimum range/setting for operation Collects data in a sloppy, | |--|--|---|---| | [b] | logical order & completely with correct units and number of significant digits | logical order & completely with correct units and number of significant digits, with minor errors. | illogical order & incompletely. Does not know the concept of correct units and number of significant digits | | 6. Documentation:
Content/Organizatio
n [g1] | Lab reports well organized, neat according guidelines | Lab reports reasonably well organized according guidelines | Lab reports poorly organized | | 7. Documentation:
English and format
[g1] | Effective use of English language, correct spelling and grammar, technical terminology and proper results interpretation | Proper use of English language, spelling and correct grammar, technical terminology and proper results interpretation, with minor errors and inaccuracy | Poor use of English language, incorrect spelling and grammar and technical terminology; and wrong results interpretation | | 8. Teamwork [d] | Actively engages and cooperates with other group members in an effective manner. | Cooperates with other group members in a reasonable manner. | Distracts or discourages other group members from conducting the experiment. | ### Assessment form for ME 482/484 - Mechanical Engineering Design **Method:** Written project proposal, oral presentation of the project proposal, peer evaluation of each other in the team, written project report, oral presentation of the project, essay on lifelong learning, an essay on ethical issues and societal impact. - c. an ability to design a system, component, or process... - **d.** an ability to function on a multi-disciplinary team - f. an understanding of professional and ethical responsibility - g. an ability to communicate effectively (g1: written, g2: oral) - **h.** the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context - i. a recognition of the need for, and an ability to engage in life-long learning - **j.** a knowledge of contemporary issues - **k.** an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice | Performance | Exceeds expectation (5) | Meets expectation (3) | Does not meet expectation (1) | |--|--|---|---| | 1. Design strategy [c] | Carefully plans and sets
objectives as well as
how to achieve the
objectives. Readily uses
alternative methods
when necessary. | Plans and sets
objectives, but how to
achieve the objectives is
not clearly stated. There
is no alternative method
proposed. | Does not have a working design strategy. | | 2. Background
research: Literature
Review [c, h] | Finds 5 or more
scholarly articles that are
closely related to the
project; thoroughly
discusses the connection
between those articles
and the project | Finds 3 or more
scholarly articles closely
related to the project
and at least two other
sources that are either
not scholarly or not
closely related;
discussion of sources is
fairly thorough | Finds less than 3 closely related scholarly articles or the discussion of the articles is cursory | | 3. Constraints | Knows the constraints | Knows the constraints | Does not know about the | |----------------------|---|--|--| | [c] | and accounts for them in developing the design strategy, including economic, ethical, social, cultural, and environmental constraints | and accounts for them in developing the design strategy with minor error or ignores one or two economic, ethical, social, cultural, or environmental constraints | constraints or does not account for them in the design strategy or ignores more than two economic, ethical, social, cultural, or environmental constraints | | 4. Attendance [d] | On time at all meetings. | Sometimes late at meetings. | All the times late and often no show at meetings. | | 5. Participation [d] | Plays actively the assigned role, takes on extra work to assist others, and takes the lead in situations when everyone is hesitant. | Plays own role
appropriately, and
expect others to play
theirs. | Frequently absent, ineffective, and blames others for own issues and problems. | | 6. Contribution [d] | Contributes well prepared and organized ideas, share information outside meetings via electronic means, shares credit for success. | Contributes good ideas at meetings and shares credit for success. | Does not contribute to meeting discussions, and participate passively at meetings. | |---------------------------------------|--|---|---| | 7. Ethics [f] | Identifies the ethical issues associated with the project and discusses these issues thoroughly | Identifies most of the ethical issues associated with project, but misses some; discussion of the issues in the text is not completely thorough | Fails to recognize key issues or the discussion is cursory | | 8. Behavior and responsibility [f, d] | Respect others, uses balanced and objective judgment, takes personal responsibility for own actions. | Sometimes does not respect others, does not use balanced and objective judgment, and does not take personal responsibility for own actions. | Often does not respect
others, does not use
balanced and objective
judgment, and does not
take personal
responsibility for own
actions. | | 9. Problem formulation [g1] | Problem clearly stated
and well-defined;
concepts and ideas are
clearly articulated and
formulated | Problem statement is
mostly clear and fairly
well-defined; concepts
and ideas are formulated
with minor error | Problem statement is
unclear or poorly defined;
concepts and ideas are
poorly articulated and
formulated | | 10. Organization | Materials are organized | Materials are organized | Poor organization: no | |---------------------|---------------------------|-------------------------|-----------------------------| | [g1] | in logical sequences | in logical sequences | structures such as sub- | | | with headings, sub- | with headings, sub- | headings and paragraph, | | | headings and | headings and | and no sequential flow of | | | paragraphs, making it | paragraphs, but some | materials and thoughts. | | | easy for the reader to go | section and sub-section | | | | through and understand. | are not clearly | | | | | identified, and some | | | | | paragraphs combine | | | | | multiple thoughts. | | | 11. Format/style | Accurate and proper use | Proper use of figures, | Inappropriate use of | | [g1] | of figures, tables and | tables and captions, | figures, tables and | | [8-1 | captions, references and | references and | captions, references and | | | bibliography, and | bibliography, and | bibliography, and | | | appendices. | appendices with minor | appendices with major | | | ирренитесь: | error. | errors. | | | | | | | 12. Grammar and | Correct. | Minor mistakes. | Incorrect most of the | | spelling [g1] | | | times. | | 13. Appearance [g2] | Neat and professional. | Casual but appropriate. | Inappropriate. | | 13. Appearance [g2] | reat and professional. | Casuar out appropriate. | тпарргоргіас. | | 14. Delivery [g2] | Effective and well | Delivery with minor | Poor delivery, difficult to | | | organized delivery. | error, but can be | follow and understand. | | | | followed and | | | | | understood. | | | | | | | | 15. Features | Uses effective eye | Has some difficulty with | Has major difficulties | |-----------------------|---------------------------|--------------------------|-------------------------------| | [g2] | contact and voice | eye contact and voice | with eye contact and | | | projection, speaks | projection, occasionally | voice projection, blocks | | | comfortably and | blocks screen and shows | the screen and reads from | | | smoothly, does not | nervousness. | it. Displays most of the | | | block visual aides. | | times signs of | | | | | nervousness. | | 16. Visual aides | Uses visual aides | Uses visual aides with | Usas visual aidas poorly | | | | | Uses visual aides poorly. | | [g2, k] | effectively. | minor error. | | | 17 Tintonia A | Compfeller listers to | Listan to secotions and | Missa danstand assetions | | 17. Listening to and | Carefully listens to | Listen to questions and | Misunderstand questions | | answering questions | questions and responds | responds with minor | and provides wrong | | [g2] | appropriately. | error. | answers. | | | | | | | 18. Background issues | Does researches and is | Is somewhat familiar | Is not at all familiar with | | [h] | familiar with historical, | with historical, social, | historical, social, cultural, | | | social, cultural, | cultural, environmental, | environmental, and | | | environmental, and | and ethical background | ethical background and | | | ethical background and | and issues. | issues. | | | issues. | | | | | | | | | 19. Contemporary Issues [h, j] | Identifies the contemporary issues associated with the project and discusses these issues thoroughly in the proposal | Identifies most of the contemporary issues associated with project, but misses some; discussion of the issues in the text is not completely thorough | Fails to recognize key issues or the discussion is cursory | |--|---|--|--| | 20. Recognizes the need for life-long learning (LLL) [i] 21. Feels prepared for | Makes a strong argument connecting the need for LLL to his or her career plans Makes a strong | Mentions why LLL is important in his or her LLL plan Mentions ways that the | Fails to mention why LLL is necessary or down plays its importance Fails to mention feeling | | LLL [i] | argument for how the SIUE ME program has prepared him or her for LLL | SIUE ME program has
prepared him or her for
LLL | prepared for LLL or says
he or she does not feel
prepared | | 22. Computers and
Software [k] | Computer-based tools
and technical software
were used extensively in
the project; new
software was learned as
needed | Computer-based tools
and technical software
were somewhat utilized;
some effort was put into
learning new software as
needed | Technical software was
not utilized; no attempt
was made at learning new
software |